Use Case of Kubernetes

Chirag Nagori
8 min readDec 26, 2020

This blog tell you about the use case of kubernetes i.e. How IT companies use kubernetes and how kubernetes are beneficial for them. So let’s start….

  • What is Kubernetes ?

Kubernetes , also known as K8s, is an open-source system for automating deployment, scaling, and management of containerized applications. It was originally designed by Google and is now maintained by the Cloud Native Computing Foundation . It aims to provide a “platform for automating deployment, scaling, and operations of application containers across clusters of hosts”. It works with a range of container tools and runs containers in a cluster, often with images built using Docker. Kubernetes originally interfaced with the Docker runtime through a “Dockershim”; however, the shim has since been deprecated in favor of directly interfacing with containerd or another CRI-compliant runtime.

Case Study on Spotify , BOSE , IBM ……

Spotify

Challenges : Launched in 2008, the audio-streaming platform has grown to over 200 million monthly active users across the world. “Our goal is to empower creators and enable a really immersive listening experience for all of the consumers that we have today — and hopefully the consumers we’ll have in the future,” says Jai Chakrabarti, Director of Engineering, Infrastructure and Operations. An early adopter of microservices and Docker, Spotify had containerized microservices running across its fleet of VMs with a homegrown container orchestration system called Helios . By late 2017, it became clear that “having a small team working on the features was just not as efficient as adopting something that was supported by a much bigger community,” he says.

Solution : “We saw the amazing community that had grown up around Kubernetes, and we wanted to be part of that,” says Chakrabarti. Kubernetes was more feature-rich than Helios. Plus, “we wanted to benefit from added velocity and reduced cost, and also align with the rest of the industry on best practices and tools.” At the same time, the team wanted to contribute its expertise and influence in the flourishing Kubernetes community. The migration, which would happen in parallel with Helios running, could go smoothly because “Kubernetes fit very nicely as a complement and now as a replacement to Helios,” says Chakrabarti.

Impact : The team spent much of 2018 addressing the core technology issues required for a migration, which started late that year and is a big focus for 2019. “A small percentage of our fleet has been migrated to Kubernetes, and some of the things that we’ve heard from our internal teams are that they have less of a need to focus on manual capacity provisioning and more time to focus on delivering features for Spotify,” says Chakrabarti. The biggest service currently running on Kubernetes takes about 10 million requests per second as an aggregate service and benefits greatly from autoscaling, says Site Reliability Engineer James Wen. Plus, he adds, “Before, teams would have to wait for an hour to create a new service and get an operational host to run it in production, but with Kubernetes, they can do that on the order of seconds and minutes.” In addition, with Kubernetes’s bin-packing and multi-tenancy capabilities, CPU utilization has improved on average two- to threefold.

BOSE

“We needed to provide a mechanism for developers to rapidly prototype and deploy services all the way to production pretty fast,” says Lead Cloud Engineer Josh West. “There were a lot of cloud capabilities we wanted to provide to support our audio equipment and experiences.”

In 2016, the company decided to start building an IoT platform from scratch. The primary goal: “To be one to two steps ahead of the different product groups so that we are never scrambling to catch up with their scale,” says Cloud Architecture Manager Dylan O’Mahony. “If they release a new connected product, we want to be already well ahead of being able to handle whatever scale that they’re going to throw at us.”

From the beginning, the team knew it wanted a microservices architecture and platform as a service. After evaluating and prototyping orchestration solutions, including Mesos and Docker Swarm, the team decided to adopt Kubernetes for its platform running on AWS. Kubernetes was still in 1.5, but already the technology could do much of what the team wanted and needed for the present and the future. For West, that meant having storage and network handled. O’Mahony points to Kubernetes’ portability in case Bose decides to go multi-cloud.

“Bose is a company that looks out for the long term,” says West. “Going with a quick commercial off-the-shelf solution might’ve worked for that point in time, but it would not have carried us forward, which is what we needed from Kubernetes and the CNCF.”

The team spent time working on choosing tooling to make the experience easier for developers. “Our developers interact with tools provided by our Ops team, and the Ops team run all of their tooling on top of Kubernetes,” says O’Mahony. “We try not to make direct Kubernetes access the only way. In fact, ideally, our developers wouldn’t even need to know that they’re running on Kubernetes.”

The platform, which also incorporated Prometheus monitoring from the beginning, backdoored its way into production in 2017, serving over 3 million connected products from the get-go. “Even though the speakers and the products that we were designing this platform for were still quite a ways away from being launched, we did have some connected speakers on the market,” says O’Mahony. “We basically started to point certain features of those speakers and the apps that go with those speakers to this platform.”

Today, just one of Bose’s production clusters holds 1,800 namespaces/discrete services and 340 nodes. With about 100 engineers now onboarded, the platform infrastructure is now enabling 30,000 non-production deployments across dozens of microservices per year. In 2018, there were 1250+ production deployments.. It’s a staggering improvement over some of Bose’s previous deployment processes, which supported far fewer deployments and services.

We had a brand new service deployed from concept through coding and deployment all the way to production, including hardening, security testing and so forth, in less than two and a half weeks,” says O’Mahony. “Everybody thinks in terms of automation, leaning out the processes, getting things done as quickly as possible. When you step back and look at what it means for a 50-plus-year-old speaker company to have that sort of culture, it really is quite incredible, and I think the tools that we use and the foundation that we’ve built is a huge piece of that.”

Many of those technologies — such as Fluentd , CoreDNS , Jaeger , and OpenTracing — come from the CNCF Landscape, which West and O’Mahony have relied upon throughout Bose’s cloud native journey. “The CNCF Landscape quickly explains what’s going on in all the different areas from storage to cloud providers to automation and so forth,” says West. “This is our shopping cart to build a cloud infrastructure. We can go choose from the different aisles.”

And, he adds, “If it weren’t for Kubernetes and the rest of the CNCF projects being free open source software with such a strong community, we would never have achieved scale, or even gotten to launch on schedule.”

Another benefit of going cloud native: “We are even attracting much more talent into Bose because we’re so involved with the CNCF Landscape,” says West. (Yes, they’re hiring.) “It’s just enabled so many people to do so many great things and really brought Bose into the future of cloud.”

In the coming year, the team wants to work on service mesh and serverless, as well as expansion around the world. “Getting our latency down by going multi-region is going to be a big focus for us,” says O’Mahony. “In order to make sure that our customers in Japan, Australia, and everywhere else are having a good experience, we want to have points of presence closer to them. It’s never been done at Bose before.”

That won’t stop them, because the team is all about lofty goals. “We want to get to billions of connected products!” says West. “We have a lot going on to support many more of our business units at Bose in addition to the consumer electronics division, which we currently do. It’s only because of the cloud native landscape and the tools and the features that are available that we can provide such a fantastic cloud platform for all the developers and divisions that are trying to enable some pretty amazing experiences.”

In fact, given the scale the platform is already supporting, says O’Mahony, “doing anything other than Kubernetes, I think, would be folly at this point.”

IBM

Challenge : IBM Cloud offers public, private, and hybrid cloud functionality across a diverse set of runtimes from its OpenWhisk-based function as a service (FaaS) offering, managed Kubernetes and containers, to Cloud Foundry. platform as a service (PaaS). These runtimes are combined with the power of the company’s enterprise technologies, such as MQ and DB2, its modern artificial intelligence (AI) Watson, and data analytics services. Users of IBM Cloud can exploit capabilities from more than 170 different cloud native services in its catalog, including capabilities such as IBM’s Weather Company API and data services. In the later part of 2017, the IBM Cloud Container Registry team wanted to build out an image trust service.

Solution : The work on this new service culminated with its public availability in the IBM Cloud in February 2018. The image trust service, called Portieris, is fully based on the Cloud Native Computing Foundation(CNCF) . open source project Notary , according to Michael Hough, a software developer with the IBM Cloud Container Registry team. Portieris is a Kubernetes admission controller for enforcing content trust. Users can create image security policies for each Kubernetes namespace, or at the cluster level, and enforce different levels of trust for different images. Portieris is a key part of IBM’s trust story, since it makes it possible for users to consume the company’s Notary offering from within their IKS clusters. The offering is that Notary server runs in IBM’s cloud, and then Portieris runs inside the IKS cluster. This enables users to be able to have their IKS cluster verify that the image they’re loading containers from contains exactly what they expect it to, and Portieris is what allows an IKS cluster to apply that verification.

Impact : IBM’s intention in offering a managed Kubernetes container service and image registry is to provide a fully secure end-to-end platform for its enterprise customers. “Image signing is one key part of that offering, and our container registry team saw Notary as the de facto way to implement that capability in the current Docker and container ecosystem,” Hough says. The company had not been offering image signing before, and Notary is the tool it used to implement that capability. “We had a multi-tenant Docker Registry with private image hosting,” Hough says. “The Docker Registry uses hashes to ensure that image content is correct, and data is encrypted both in flight and at rest. But it does not provide any guarantees of who pushed an image. We used Notary to enable users to sign images in their private registry namespaces if they so choose.”

Thank you !

--

--